Discrete Lagrangian Systems on the Virasoro Group and Camassa-holm Family
نویسنده
چکیده
We show that the continuous limit of a wide natural class of the right-invariant discrete Lagrangian systems on the Virasoro group gives the family of integrable PDE’s containing Camassa-Holm, Hunter-Saxton and Korteweg-de Vries equations. This family has been recently derived by Khesin and Misio-lek as Euler equations on the Virasoro algebra for H1 α,βmetrics. Our result demonstrates a universal nature of these equations.
منابع مشابه
Discrete Lagrangian Systems And
We show that the continuous limit of a wide natural class of the right-invariant discrete Lagrangian systems on the Virasoro group gives the family of integrable PDE's containing Camassa-Holm, Hunter-Saxton and Korteweg-de Vries equations. This family has been recently derived by Khesin and Misio lek as Euler equations on the Virasoro algebra for H 1 α,β-metrics. Our result demonstrates a unive...
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملVirasoro Action on Pseudo-differential Symbols and (Noncommutative) Supersymmetric Peakon Type Integrable Systems
Using Grozman’s formalism of invariant differential operators we demonstrate the derivation of N = 2 Camassa-Holm equation from the action of V ect(S1|2) on the space of pseudo-differential symbols. We also use generalized logarithmic 2-cocycles to derive N = 2 super KdV equations. We show this method is equally effective to derive Camassa-Holm family of equations and these system of equations ...
متن کاملOn Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method
The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...
متن کاملA Lagrangian view on complete integrability of the two-component Camassa–Holm system
We show how the change from Eulerian to Lagrangian coordinates for the two-component Camassa–Holm system can be understood in terms of certain reparametrizations of the underlying isospectral problem. The respective coordinates correspond to different normalizations of an associated first order system. In particular, we will see that the two-component Camassa– Holm system in Lagrangian variable...
متن کامل